Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 187
Filtrar
1.
Neurotherapeutics ; 18(3): 1729-1747, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34611843

RESUMO

Monoamine oxidase-B (MAO-B) is a well-established therapeutic target for Parkinson's disease (PD); however, previous clinical studies on currently available irreversible MAO-B inhibitors have yielded disappointing neuroprotective effects. Here, we tested the therapeutic potential of KDS2010, a recently synthesized potent, selective, and reversible MAO-B inhibitor in multiple animal models of PD. We designed and synthesized a series of α-aminoamide derivatives and found that derivative KDS2010 exhibited the highest potency, specificity, reversibility, and bioavailability (> 100%). In addition, KDS2010 demonstrated significant neuroprotective and anti-neuroinflammatory efficacy against nigrostriatal pathway destruction in the mouse MPTP model of parkinsonism. Treatment with KDS2010 also alleviated parkinsonian motor dysfunction in 6-hydroxydopamine-induced and A53T mutant α-synuclein overexpression rat models of PD. Moreover, KDS2010 showed virtually no toxicity or side effects in non-human primates. KDS2010 could be a next-generation therapeutic candidate for PD.


Assuntos
Desenvolvimento de Medicamentos/métodos , Inibidores da Monoaminoxidase/uso terapêutico , Monoaminoxidase/metabolismo , Transtornos Parkinsonianos/tratamento farmacológico , Animais , Relação Dose-Resposta a Droga , Feminino , Macaca fascicularis , Masculino , Camundongos , Inibidores da Monoaminoxidase/química , Transtornos Parkinsonianos/induzido quimicamente , Transtornos Parkinsonianos/enzimologia , Transtornos Parkinsonianos/patologia , Ratos , Resultado do Tratamento
2.
PLoS One ; 16(6): e0252325, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34106956

RESUMO

Multiple mutations have been described in the human GBA1 gene, which encodes the lysosomal enzyme beta-glucocerebrosidase (GCase) that degrades glucosylceramide and is pivotal in glycosphingolipid substrate metabolism. Depletion of GCase, typically by homozygous mutations in GBA1, is linked to the lysosomal storage disorder Gaucher's disease (GD) and distinct or heterozygous mutations in GBA1 are associated with increased Parkinson's disease (PD) risk. While numerous genes have been linked to heritable PD, GBA1 mutations in aggregate are the single greatest risk factor for development of idiopathic PD. The importance of GCase in PD necessitates preclinical models in which to study GCase-related mechanisms and novel therapeutic approaches, as well as to elucidate the molecular mechanisms leading to enhanced PD risk in GBA1 mutation carriers. The aim of this study was to develop and characterize a novel GBA1 mouse model and to facilitate wide accessibility of the model with phenotypic data. Herein we describe the results of molecular, biochemical, histological, and behavioral phenotyping analyses in a GBA1 D409V knock-in (KI) mouse. This mouse model exhibited significantly decreased GCase activity in liver and brain, with substantial increases in glycosphingolipid substrates in the liver. While no changes in the number of dopamine neurons in the substantia nigra were noted, subtle changes in striatal neurotransmitters were observed in GBA1 D409V KI mice. Alpha-synuclein pathology and inflammation were not observed in the nigrostriatal system of this model. In summary, the GBA1 D409V KI mouse model provides an ideal model for studies aimed at pharmacodynamic assessments of potential therapies aiming to restore GCase.


Assuntos
Glucosilceramidase/metabolismo , Glicoesfingolipídeos/metabolismo , Animais , Encéfalo/metabolismo , Feminino , Técnicas de Introdução de Genes , Glucosilceramidase/genética , Immunoblotting , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Transtornos Parkinsonianos/enzimologia , Transtornos Parkinsonianos/genética , Transtornos Parkinsonianos/metabolismo , Mutação Puntual/genética
3.
Eur J Pharmacol ; 892: 173742, 2021 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-33220276

RESUMO

Opicapone is a third generation nitrocatechol catechol-O-methyltransferase inhibitor that has received regional market approval for use as adjunctive therapy to levodopa in Parkinson's disease patients with motor fluctuations. This study evaluated the effects of opicapone as adjunct to levodopa in reversing a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) induced Parkinson's-like syndrome in cynomolgus monkeys in during opicapone preclinical development program. A Parkinson's-like syndrome was induced in cynomolgus monkeys by daily administrations of MPTP. Evaluation of the animals included scoring with the Primate Parkinsonism Motor Rating Scale (PPMRS) and assessment of locomotor activity. MPTP produced a stable Parkinson's-like behavioural syndrome as evidenced by tremor, postural changes, rigidity, impaired movements and balance, (PPMRS scores of 10-15) and decreased locomotor activity (13% of pre-MPTP values). Opicapone treatment alone, for 14 days, did not change Parkinson's-like symptoms nor decreased subject's locomotor behaviour. Ascending combinations of levodopa/benserazide dose-dependently decreased PPMRS and improved locomotor behaviour reaching statistical significance for levodopa/benserazide doses of 18/4.5 mg/kg and those effects were enhanced in opicapone treated subjects. Opicapone treated subjects as compared vehicle-treated, had markedly reduced erythrocyte catechol-O-methyltransferase activity, significantly increased plasma levodopa levels (1.8-fold higher AUC) with no statistically significant changes in Cmax and significantly reduced 3-OMD AUC and Cmax values (7.8- and 6.8-fold respectively). Opicapone potentiated the improvements in Parkinson's-like symptoms produced by levodopa/benserazide combinations with concomitant increase in plasma levodopa exposure, reduction of plasma 3-O-methyldopa levels and erythrocyte catechol-O-methyltransferase activity, results that were later demonstrated in 2 large Phase 3 studies in Parkinson's disease patients.


Assuntos
Antiparkinsonianos/farmacologia , Comportamento Animal/efeitos dos fármacos , Inibidores de Catecol O-Metiltransferase/farmacologia , Eritrócitos/efeitos dos fármacos , Levodopa/farmacologia , Locomoção/efeitos dos fármacos , Oxidiazóis/farmacologia , Transtornos Parkinsonianos/tratamento farmacológico , 1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina , Animais , Modelos Animais de Doenças , Quimioterapia Combinada , Eritrócitos/enzimologia , Feminino , Macaca fascicularis , Transtornos Parkinsonianos/induzido quimicamente , Transtornos Parkinsonianos/enzimologia , Transtornos Parkinsonianos/fisiopatologia , Fatores de Tempo
4.
Cell Mol Neurobiol ; 41(8): 1651-1663, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32770297

RESUMO

Concussion is a widely recognized environmental risk factor for neurodegenerative diseases, including Parkinson's disease (PD). Small-vessel disease of the brain has been reported to contribute to neurodegenerative diseases. In this study, we observed BBB disruption in wild-type (WT) mice, but not in matrix metalloproteinase 9 (MMP-9) knockout mice, subjected to single severe traumatic brain injury (ssTBI). Furthermore, treating ssTBI mice with the MMP-9 inhibitor GM6001 effectively maintained BBB integrity, promoted the elimination of damaged mitochondria via mitophagy, and then prevented neuronal death and progressive neurodegeneration. However, we did not observe this neuroprotective effect of MMP-9 inhibition in beclin-1-/+ mice. Collectively, these findings revealed that concussion led to BBB disruption via MMP-9, and that GM6001 prevented the development of PD via the autophagy pathway.


Assuntos
Autofagia/efeitos dos fármacos , Lesões Encefálicas Traumáticas/tratamento farmacológico , Dipeptídeos/uso terapêutico , Metaloproteinase 9 da Matriz/metabolismo , Inibidores de Metaloproteinases de Matriz/uso terapêutico , Transtornos Parkinsonianos/tratamento farmacológico , Animais , Autofagia/fisiologia , Encéfalo/efeitos dos fármacos , Encéfalo/enzimologia , Encéfalo/patologia , Lesões Encefálicas Traumáticas/enzimologia , Lesões Encefálicas Traumáticas/patologia , Dipeptídeos/farmacologia , Feminino , Masculino , Inibidores de Metaloproteinases de Matriz/farmacologia , Aprendizagem em Labirinto/efeitos dos fármacos , Aprendizagem em Labirinto/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Transtornos Parkinsonianos/enzimologia , Transtornos Parkinsonianos/patologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Índices de Gravidade do Trauma
5.
Neurochem Int ; 139: 104816, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32758590

RESUMO

Patients with Parkinson's disease (PD) show a common progressive neurodegenerative movement disorder characterized by rigidity, tremors, postural instability, and bradykinesia due to the loss of dopaminergic neurons in the substantia nigra, and is often accompanied by several non-motor symptoms, called parkinsonism. Several lines of recent evidence support the hypothesis that mutations in the gene encoding phosphoglycerate kinase (PGK) play an important role in the PD mechanism. PGK is a key enzyme in the glycolytic pathway that catalyzes the reaction from 1,3-diphosphoglycerate to 3-phosphoglycerate. We herein established a parkinsonism model targeting Drosophila Pgk. Dopaminergic (DA) neuron-specific Pgk knockdown lead to locomotive defects in both young and aged adult flies and was accompanied by progressive DA neuron loss with aging. Pgk knockdown in DA neurons decreased dopamine levels in the central nervous system (CNS) of both young and aged adult flies. These phenotypes are similar to the defects observed in human PD patients, suggesting that the Pgk knockdown flies established herein are a promising model for parkinsonism. Furthermore, pan-neuron-specific Pgk knockdown induced low ATP levels and the accumulation of reactive oxygen species (ROS) in the CNS of third instar larvae. Collectively, these results indicate that a failure in the energy production system of Pgk knockdown flies causes locomotive defects accompanied by neuronal dysfunction and degeneration in DA neurons.


Assuntos
Neurônios Dopaminérgicos/enzimologia , Transtornos Parkinsonianos/enzimologia , Transtornos Parkinsonianos/genética , Fosfoglicerato Quinase/antagonistas & inibidores , Fosfoglicerato Quinase/genética , Sequência de Aminoácidos , Animais , Animais Geneticamente Modificados , Neurônios Dopaminérgicos/patologia , Drosophila , Proteínas de Drosophila/antagonistas & inibidores , Proteínas de Drosophila/deficiência , Proteínas de Drosophila/genética , Humanos , Transtornos Parkinsonianos/patologia , Fosfoglicerato Quinase/deficiência
6.
Ann Clin Transl Neurol ; 7(8): 1436-1442, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32767480

RESUMO

FBXO7 is implicated in the ubiquitin-proteasome system and parkin-mediated mitophagy. FBXO7defects cause a levodopa-responsive parkinsonian-pyramidal syndrome(PPS). METHODS: We investigated the disease molecular bases in a child with PPS and brain iron accumulation. RESULTS: A novel homozygous c.368C>G (p.S123*) FBXO7 mutation was identified in a child with spastic paraplegia, epilepsy, cerebellar degeneration, levodopa nonresponsive parkinsonism, and brain iron deposition. Patient's fibroblasts assays demonstrated an absence of FBXO7 RNA expression leading to impaired proteasome degradation and accumulation of poly-ubiquitinated proteins. CONCLUSION: This novel FBXO7 phenotype associated with impaired proteasome activity overlaps with neurodegeneration with brain iron accumulation disorders.


Assuntos
Proteínas F-Box/genética , Distúrbios do Metabolismo do Ferro , Distrofias Neuroaxonais , Transtornos Parkinsonianos , Complexo de Endopeptidases do Proteassoma/metabolismo , Adulto , Consanguinidade , Epilepsia/enzimologia , Epilepsia/genética , Epilepsia/patologia , Epilepsia/fisiopatologia , Feminino , Humanos , Distúrbios do Metabolismo do Ferro/enzimologia , Distúrbios do Metabolismo do Ferro/genética , Distúrbios do Metabolismo do Ferro/patologia , Distúrbios do Metabolismo do Ferro/fisiopatologia , Distrofias Neuroaxonais/enzimologia , Distrofias Neuroaxonais/genética , Distrofias Neuroaxonais/patologia , Distrofias Neuroaxonais/fisiopatologia , Paraplegia/enzimologia , Paraplegia/genética , Paraplegia/patologia , Paraplegia/fisiopatologia , Transtornos Parkinsonianos/enzimologia , Transtornos Parkinsonianos/genética , Transtornos Parkinsonianos/patologia , Transtornos Parkinsonianos/fisiopatologia , Degenerações Espinocerebelares/enzimologia , Degenerações Espinocerebelares/genética , Degenerações Espinocerebelares/patologia , Degenerações Espinocerebelares/fisiopatologia , Síndrome , Adulto Jovem
7.
Naunyn Schmiedebergs Arch Pharmacol ; 393(11): 2157-2164, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32621059

RESUMO

Whereas monoamine oxidase (MAO) type B inhibitors are used as adjunct to L-3,4-dihydroxyphenylalanine (L-DOPA) in the treatment of Parkinson's disease (PD), the enzyme MAO type A (MAO-A) also participates in the metabolism of dopamine in the human and primate striatum. Here, we sought to assess the effect of the selective reversible MAO-A inhibitor moclobemide on L-DOPA anti-parkinsonian in the gold standard animal model of PD, the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-lesioned primate. We also assessed the effect of moclobemide on L-DOPA-induced dyskinesia and psychosis-like behaviours (PLBs). Experiments were performed in six MPTP-lesioned marmosets chronically treated with L-DOPA and exhibiting stable dyskinesia and PLBs upon each administration. In a randomised within-subject design, animals were administered a therapeutic dose of L-DOPA in combination with moclobemide (0.1, 1 and 10 mg/kg) or its vehicle, after which the severity of parkinsonism, dyskinesia, and PLBs was rated by an experienced blinded rater. Moclobemide significantly reduced the global parkinsonian disability (- 36% with 0.1 mg/kg, P < 0.05; - 38% with 1 mg/kg, P < 0.01; - 47% with 10 mg/kg, P < 0.01), when compared with its vehicle. This reduction of parkinsonism was not accompanied by an exacerbation of dyskinesia or PLBs. Reversible MAO-A inhibition with moclobemide appears as an effective way to increase the anti-parkinsonian action of L-DOPA, without negatively affecting dyskinesia or dopaminergic psychosis.


Assuntos
Antiparkinsonianos/farmacologia , Gânglios da Base/efeitos dos fármacos , Levodopa/farmacologia , Moclobemida/farmacologia , Inibidores da Monoaminoxidase/farmacologia , Monoaminoxidase/metabolismo , Transtornos Parkinsonianos/tratamento farmacológico , 1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina , Animais , Antiparkinsonianos/toxicidade , Gânglios da Base/enzimologia , Gânglios da Base/fisiopatologia , Comportamento Animal/efeitos dos fármacos , Callithrix , Modelos Animais de Doenças , Sinergismo Farmacológico , Quimioterapia Combinada , Discinesia Induzida por Medicamentos/etiologia , Discinesia Induzida por Medicamentos/fisiopatologia , Feminino , Levodopa/toxicidade , Masculino , Atividade Motora/efeitos dos fármacos , Transtornos Parkinsonianos/induzido quimicamente , Transtornos Parkinsonianos/enzimologia , Transtornos Parkinsonianos/fisiopatologia , Psicoses Induzidas por Substâncias/etiologia , Psicoses Induzidas por Substâncias/psicologia
8.
Naunyn Schmiedebergs Arch Pharmacol ; 393(11): 2139-2144, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32601846

RESUMO

Monoamine oxidase (MAO) type B (MAO-B) inhibition was shown to confer anti-parkinsonian benefit as monotherapy and adjunct to L-3,4-dihydroxyphenylalanine (L-DOPA) in clinical trials. Here, we explore the anti-parkinsonian effect of MAO type A (MAO-A) inhibition as monotherapy, as the enzyme MAO-A is also encountered within the primate and human basal ganglia, where it metabolises dopamine, albeit to a lesser extent than MAO-B. In six 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-lesioned marmosets, we assessed the anti-parkinsonian effect of the reversible MAO-A inhibitor moclobemide (0.1 and 1 mg/kg) as monotherapy and compared it to that of L-DOPA and vehicle treatments. Moclobemide significantly reversed parkinsonism (by 39%, P < 0.01), while eliciting only mild dyskinesia and psychosis-like behaviours (PLBs). In contrast, L-DOPA anti-parkinsonian effect was accompanied by marked dyskinesia and PLBs. MAO-A inhibition with moclobemide may provide anti-parkinsonian benefit when administered without L-DOPA and might perhaps be considered as monotherapy for the treatment of Parkinson's disease in the early stages of the condition.


Assuntos
Antiparkinsonianos/farmacologia , Gânglios da Base/efeitos dos fármacos , Moclobemida/farmacologia , Inibidores da Monoaminoxidase/farmacologia , Monoaminoxidase/metabolismo , Transtornos Parkinsonianos/tratamento farmacológico , 1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina , Animais , Gânglios da Base/enzimologia , Gânglios da Base/fisiopatologia , Comportamento Animal/efeitos dos fármacos , Callithrix , Modelos Animais de Doenças , Feminino , Levodopa/farmacologia , Masculino , Atividade Motora/efeitos dos fármacos , Transtornos Parkinsonianos/induzido quimicamente , Transtornos Parkinsonianos/enzimologia , Transtornos Parkinsonianos/fisiopatologia
9.
Neuropharmacology ; 167: 107976, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32001239

RESUMO

Parkinson's disease (PD) is a devastating neurodegenerative disease that leads to motor deficits and selective destruction of nigrostriatal dopaminergic neurons. PD is typically treated by dopamine replacement agents; however, dopamine replacement loses effectiveness in the later stages of the disease. Here, we describe the neuroprotective effects of the omega-3 fatty acid docosahexaenoic acid (DHA) in the medial forebrain bundle 6-hydroxydopamine (6-OHDA) model of advanced-stage PD in rats. We show that daily administration of DHA protects against core symptoms of PD, including deficits in postural stability, gait integrity, and dopamine neurochemistry in motor areas of the striatum. Our results also demonstrate that DHA increases striatal dopamine synthesis via phosphorylation of the rate-limiting catecholamine synthesizing enzyme tyrosine hydroxylase, in a manner dependent on the second messenger-linked protein kinases PKA and PKC. We also show that DHA specifically reverses dopamine loss in the nigrostriatal pathway, with no effect in the mesolimbic or mesocortical pathways. This suggests that DHA is unlikely to produce pharmacotherapeutic or adverse effects that depend on dopamine pathways other than the nigrostriatal pathway. To our knowledge, previous reports have not examined the effects of DHA in such an advanced-stage model, documented that the dopamine synthesizing effects of DHA in vivo are mediated through the activation of protein kinases and regulation of TH activity, or demonstrated specificity to the nigrostriatal pathway. These novel findings corroborate the beneficial effects of omega-3 fatty acids seen in PD patients and suggest that DHA provides a novel means of protecting patients for dopamine neurodegeneration.


Assuntos
Corpo Estriado/enzimologia , Ácidos Docosa-Hexaenoicos/uso terapêutico , Dopamina/biossíntese , Transtornos Parkinsonianos/enzimologia , Transtornos Parkinsonianos/prevenção & controle , Proteínas Quinases/biossíntese , Animais , Corpo Estriado/efeitos dos fármacos , Ácidos Docosa-Hexaenoicos/farmacologia , Masculino , Atividade Motora/efeitos dos fármacos , Atividade Motora/fisiologia , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Oxidopamina/toxicidade , Transtornos Parkinsonianos/induzido quimicamente , Distribuição Aleatória , Ratos , Ratos Sprague-Dawley
10.
J Neuroinflammation ; 16(1): 246, 2019 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-31791357

RESUMO

BACKGROUND: Neuroinflammation plays a pivotal role in the pathogenesis of Parkinson's disease (PD). Thus, the development of agents that can control neuroinflammation has been suggested as a promising therapeutic strategy for PD. In the present study, we investigated whether the phosphodiesterase (PDE) 10 inhibitor has anti-inflammatory and neuroprotective effects in neuroinflammation and PD mouse models. METHODS: Papaverine (PAP) was utilized as a selective inhibitor of PDE10. The effects of PAP on the expression of pro-inflammatory molecules were examined in lipopolysaccharide (LPS)-stimulated BV2 microglial cells by ELISA, RT-PCR, and Western blot analysis. The effects of PAP on transcription factors were analyzed by the electrophoretic mobility shift assay, the reporter gene assay, and Western blot analysis. Microglial activation and the expression of proinflammatory molecules were measured in the LPS- or MPTP-injected mouse brains by immunohistochemistry and RT-PCR analysis. The effect of PAP on dopaminergic neuronal cell death and neurotrophic factors were determined by immunohistochemistry and Western blot analysis. To assess mouse locomotor activity, rotarod and pole tests were performed in MPTP-injected mice. RESULTS: PAP inhibited the production of nitric oxide and proinflammatory cytokines in LPS-stimulated microglia by modulating various inflammatory signals. In addition, PAP elevated intracellular cAMP levels and CREB phosphorylation. Treatment with H89, a PKA inhibitor, reversed the anti-inflammatory effects of PAP, suggesting the critical role of PKA signaling in the anti-inflammatory effects of PAP. We verified the anti-inflammatory effects of PAP in the brains of mice with LPS-induced systemic inflammation. PAP suppressed microglial activation and proinflammatory gene expression in the brains of these mice, and these effects were reversed by H89 treatment. We further examined the effects of PAP on MPTP-injected PD model mice. MPTP-induced dopaminergic neuronal cell death and impaired locomotor activity were recovered by PAP. In addition, PAP suppressed microglial activation and proinflammatory mediators in the brains of MPTP-injected mice. CONCLUSIONS: PAP has strong anti-inflammatory and neuroprotective effects and thus may be a potential candidate for treating neuroinflammatory disorders such as PD.


Assuntos
Anti-Inflamatórios/uso terapêutico , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Fármacos Neuroprotetores/uso terapêutico , Papaverina/uso terapêutico , Transtornos Parkinsonianos/prevenção & controle , Inibidores de Fosfodiesterase/uso terapêutico , Animais , Anti-Inflamatórios/farmacologia , Linhagem Celular Transformada , Proteínas Quinases Dependentes de AMP Cíclico/antagonistas & inibidores , Lipopolissacarídeos/toxicidade , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos ICR , Fármacos Neuroprotetores/farmacologia , Papaverina/farmacologia , Transtornos Parkinsonianos/induzido quimicamente , Transtornos Parkinsonianos/enzimologia , Inibidores de Fosfodiesterase/farmacologia , Diester Fosfórico Hidrolases/metabolismo , Distribuição Aleatória , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia
11.
Neurotox Res ; 36(1): 117-131, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31041676

RESUMO

Nitric oxide (NO) has chemical properties that make it uniquely suitable as an intracellular and intercellular messenger. NO is produced by the activity of the enzyme nitric oxide synthases (NOS). There is substantial and mounting evidence that slight abnormalities of NO may underlie a wide range of neurodegenerative disorders. NO participates of the oxidative stress and inflammatory processes that contribute to the progressive dopaminergic loss in Parkinson's disease (PD). The present study aimed to evaluate in vitro and in vivo the effects of neuronal NOS-targeted siRNAs on the injury caused in dopaminergic neurons by the toxin 6-hidroxydopamine (6-OHDA). First, we confirmed (immunohistochemistry and Western blotting) that SH-SY5Y cell lineage expresses the dopaminergic marker tyrosine hydroxylase (TH) and the protein under analysis, neuronal NOS (nNOS). We designed four siRNAs by using the BIOPREDsi algorithm choosing the one providing the highest knockdown of nNOS mRNA in SH-SY5Y cells, as determined by qPCR. siRNA 4400 carried by liposomes was internalized into cells, caused a concentration-dependent knockdown on nNOS, and reduced the toxicity induced by 6-OHDA (p < 0.05). Regarding in vivo action in the dopamine-depleted animals, intra-striatal injection of siRNA 4400 at 4 days prior 6-OHDA produced a decrease in the rotational behavior induced by apomorphine. Finally, siRNA 4400 mitigated the loss of TH(+) cells in substantia nigra dorsal and ventral part. In conclusion, the suppression of nNOS enzyme by targeted siRNAs modified the progressive death of dopaminergic cells induced by 6-OHDA and merits further pre-clinical investigations as a neuroprotective approach for PD.


Assuntos
Neurônios Dopaminérgicos/enzimologia , Óxido Nítrico Sintase Tipo I/metabolismo , Oxidopamina/toxicidade , Transtornos Parkinsonianos/enzimologia , RNA Interferente Pequeno/administração & dosagem , Substância Negra/metabolismo , Linhagem Celular Tumoral , Técnicas de Silenciamento de Genes , Humanos , Transtornos Parkinsonianos/induzido quimicamente , RNA Mensageiro/metabolismo , Tirosina 3-Mono-Oxigenase/metabolismo
12.
Neurobiol Dis ; 124: 289-296, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30521842

RESUMO

GBA1 gene encodes for the lysosomal membrane protein glucocerebrosidase (GCase). GBA1 heterozygous mutations profoundly impair GCase activity and are currently recognized as an important risk factor for the development of Parkinson's disease (PD). Deficits in lysosomal degradation pathways may contribute to pathological α-synuclein accumulation, thereby favoring dopaminergic neuron degeneration and associated microglial activation. However, the precise mechanisms by which GCase deficiency may influence PD onset and progression remain unclear. In this work we used conduritol-ß-epoxide (CBE), a potent inhibitor of GCase, to induce a partial, systemic defect of GCase activity comparable to that associated with heterozygous GBA1 mutations, in mice. Chronic (28 days) administration of CBE (50 mg/kg, i.p.) was combined with administration of a classic PD-like inducing neurotoxin, such as MPTP (30 mg/kg, i.p. for 5 days). The aim was to investigate whether a pre-existing GCase defect may influence the effects of MPTP in terms of nigrostriatal damage, microglia activation and α-synuclein accumulation. Pre-treatment with CBE had tendency to enhance MPTP-induced neurodegeneration in striatum and caused significant increase of total α-synuclein expression in substantia nigra. Microglia was remarkably activated by CBE alone, without further increases when combined with MPTP. Overall, we propose this model as an additional tool to study pathophysiological processes of PD in the presence of GCase defects.


Assuntos
Modelos Animais de Doenças , Glucosilceramidase/antagonistas & inibidores , Transtornos Parkinsonianos/enzimologia , Transtornos Parkinsonianos/patologia , Animais , Inibidores Enzimáticos/farmacologia , Inositol/análogos & derivados , Inositol/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL
13.
Stroke ; 49(8): 1977-1980, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29986930

RESUMO

Background and Purpose- Absent or diminished α-galactosidase A (GLA) and acid α-glucosidase (GAA) enzyme activity are core features of Fabry and Pompe disease, respectively. Patients with Fabry or Pompe disease may have dilated intracranial arteries but whether lower GLA or GAA enzyme activity relates to brain arterial dilatation in other populations is unknown. Methods- Participants included Parkinson disease patients and nonblood-related controls, whose GLA and GAA enzymatic activities were measured in dried blood spots. Independent readers measured the axial arterial diameter of the ascending portion of the cavernous internal carotid arteries and the most proximal segment of the basilar artery in T2 black voids. Linear regression models were built to investigate the relationship between brain arterial diameters and lysosomal enzymatic activities. Results- The cohort included 107 participants (mean age, 66.5±10.3; 67% men). In an adjusted linear regression model, lower GLA activity was associated with larger brain arterial diameters (B=0.50±0.23, P=0.03). The strength of association was the greatest for the basilar artery diameter (B=0.80±0.33, P=0.02). Similarly, lower GAA activity was associated with an increased basilar arterial diameter (B=0.73±0.35, P=0.04). Conclusions- Lower GLA and GAA enzymatic activities were associated with larger brain arterial diameters, particularly the basilar artery diameter. Lower lysosomal enzymatic function in patients without Fabry or Pompe disease may play a role in brain arterial dilatation.


Assuntos
Artérias Cerebrais/diagnóstico por imagem , Artérias Cerebrais/enzimologia , Glucana 1,4-alfa-Glucosidase/metabolismo , Lisossomos/enzimologia , alfa-Galactosidase/metabolismo , Idoso , Encéfalo/irrigação sanguínea , Encéfalo/diagnóstico por imagem , Encéfalo/enzimologia , Estudos de Coortes , Dilatação Patológica/enzimologia , Ativação Enzimática/fisiologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Transtornos Parkinsonianos/diagnóstico por imagem , Transtornos Parkinsonianos/enzimologia
14.
Biochem Pharmacol ; 155: 479-493, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30040928

RESUMO

Reduced glucocerebrosidase (GCase) enzymatic activity is found in sporadic cases of Parkinson's disease making GCase a serious risk factor for PD. GCase gene mutations constitute a major risk factor in early-onset PD but only account for 5-10% cases. Having enough evidence for construct and face validity, 6-OHDA-induced hemiparkinson's model may be useful to assess the GCase-targeting drugs in order to have new leads for treatment of PD. Ambroxol (AMB) is reported to increase GCase activity in different brain-regions. Therefore, we investigated anti-PD like effects of AMB as well as GCase activity in striatal and nigral tissues of rats in hemiparkinson's model. AMB was given a dose of 400 mg/kg per oral twice daily and SEL used as positive control was given in the dose of 10 mg/kg per oral daily from D-4 to D-27 after 6-OHDA administration. 6-OHDA reduced GCase activity in striatal and in a progressive manner in nigral tissues. AMB and SEL attenuated 6-OHDA-induced motor impairments, dopamine (DA) depletion and GCase deficiency. AMB and SEL also ameliorated 6-OHDA-induced mitochondrial dysfunction in terms of MTT reduction, α-synuclein pathology, loss of nigral cells, and intrinsic pathway of apoptosis by modulating cytochrome-C, caspase-9, and caspase-3 expressions. The results suggest that AMB attenuated 6-OHDA-induced GCase deficiency and PD symptoms. Therefore, the regenerative effects of AMB in dopamine toxicity may be due to its effects on GCase activity and mitochondrial function. Results indicate that SEL also has regenerative effect in the 6-OHDA model. Thus, GCase enzymatic activity is likely to be involved in the development of PD symptoms, and 6-OHDA-induced hemiparkinson's model may be used to evaluate compounds targeting GCase activity for management of PD symptoms.


Assuntos
Ambroxol/administração & dosagem , Glucosilceramidase/metabolismo , Oxidopamina/toxicidade , Transtornos Parkinsonianos/tratamento farmacológico , Transtornos Parkinsonianos/enzimologia , Animais , Ativação Enzimática/efeitos dos fármacos , Ativação Enzimática/fisiologia , Expectorantes/administração & dosagem , Glucosilceramidase/antagonistas & inibidores , Locomoção/efeitos dos fármacos , Locomoção/fisiologia , Masculino , Microinjeções/métodos , Transtornos Parkinsonianos/induzido quimicamente , Distribuição Aleatória , Ratos , Fatores de Tempo
15.
Toxicol Lett ; 295: 357-368, 2018 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-30040983

RESUMO

Heme Oxygenase-1 (HO-1), a stress- responsive enzyme which catalyzes heme degradation into iron, carbon monoxide, and biliverdin, exerts a neuroprotective role involving many different signaling pathways. In Parkinson disease patients, elevated HO-1 expression levels in astrocytes are involved in antioxidant defense. In the present work, employing an in vitro model of Mn2+-induced Parkinsonism in astroglial C6 cells, we investigated the role of HO-1 in both apoptosis and mitochondrial quality control (MQC). HO-1 exerted a protective effect against Mn2+ injury. In fact, HO-1 decreased both intracellular and mitochondrial reactive oxygen species as well as the appearance of apoptotic features. Considering that Mn2+ induces mitochondrial damage and a defective MQC has been implicated in neurodegenerative diseases, we hypothesized that HO-1 could mediate cytoprotection by regulating the MQC processes. Results obtained provide the first evidence that the beneficial effects of HO-1 in astroglial cells are mediated by the maintenance of both mitochondrial fusion/fission and biogenesis/mitophagy balances. Altogether, our data demonstrate a pro-survival function for HO-1 in Mn2+-induced apoptosis that involves the preservation of a proper MQC. These findings point to HO-1 as a new therapeutic target linked to mitochondrial pathophysiology in Manganism and probably Parkinson´s disease.


Assuntos
Astrócitos/efeitos dos fármacos , Cloretos/toxicidade , Heme Oxigenase-1/metabolismo , Intoxicação por Manganês/etiologia , Mitocôndrias/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Transtornos Parkinsonianos/induzido quimicamente , Animais , Apoptose/efeitos dos fármacos , Astrócitos/enzimologia , Astrócitos/patologia , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Compostos de Manganês , Intoxicação por Manganês/enzimologia , Intoxicação por Manganês/patologia , Mitocôndrias/enzimologia , Mitocôndrias/patologia , Dinâmica Mitocondrial/efeitos dos fármacos , Mitofagia/efeitos dos fármacos , Transtornos Parkinsonianos/enzimologia , Transtornos Parkinsonianos/patologia , Ratos , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fatores de Tempo
16.
Behav Brain Res ; 350: 16-22, 2018 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-29778625

RESUMO

The current study investigated the mediating role of phosphodiesterase type 4 (PDE4) regulated cAMP in the dopaminergic modulation of premature responding (action restraint) in rats. Response inhibition, which includes action restraint, finds its neurobiological origin in cortico-striatal-thalamic circuitry and can be modulated by dopamine. Intracellularly, the effect of dopamine is largely mediated through the cAMP/PKA signaling cascade. Areas in the prefrontal cortex are very sensitive to their neurochemical environment, including catecholamine levels. As a result, we investigated the effects of intracellular modulation of the dopamine cascade by means of PDE4 inhibition by roflumilast on premature responding in a hypo, normal and hyper dopaminergic state of the brain. As a hypo dopaminergic model we induced a 6-OHDA lesion in the (rat) prefrontal cortex, more specifically the infralimbic cortex. For the hyper dopaminergic state we also turned to a well-established model of impaired action restraint, namely the systemic administration of d-amphetamine. In line with the notion of a U-shaped relation between dopamine and impulsive responding, we found that both increasing and decreasing dopamine levels resulted in an increase in premature responding in the choice serial reaction time task (CSRTT). The PDE4 inhibitor roflumilast increased premature responses in combination with d-amphetamine, whereas a decrease in premature responding after roflumilast treatment was found in the 6-OHDA lesioned animals. As a result, it would be interesting to test the effects of PDE4 inhibition in disorders affected by disrupted impulse control related to cortico-striatal-thalamic hypodopaminergia including attention deficit hyperactivity disorder (ADHD).


Assuntos
Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/metabolismo , Comportamento Impulsivo/fisiologia , Atividade Motora/fisiologia , Aminopiridinas/farmacologia , Animais , Benzamidas/farmacologia , Encéfalo/efeitos dos fármacos , Encéfalo/enzimologia , Ciclopropanos/farmacologia , Dextroanfetamina/farmacologia , Dopamina/metabolismo , Inibidores da Captação de Dopamina/farmacologia , Comportamento Impulsivo/efeitos dos fármacos , Masculino , Atividade Motora/efeitos dos fármacos , Oxidopamina , Transtornos Parkinsonianos/tratamento farmacológico , Transtornos Parkinsonianos/enzimologia , Inibidores da Fosfodiesterase 4/farmacologia , Ratos Wistar
17.
J Neurosci Res ; 96(7): 1324-1335, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29577359

RESUMO

N-methyl-D-aspartate receptors (NMDARs) are ion channels comprising tetrameric assemblies of GluN1 and GluN2 receptor subunits that mediate excitatory neurotransmission in the central nervous system. Of the four different GluN2 subunits, the GluN2D subunit-containing NMDARs have been suggested as a target for antiparkinsonian therapy because of their expression pattern in some of the basal ganglia nuclei that show abnormal firing patterns in the parkinsonian state, specifically the subthalamic nucleus (STN). In this study, we demonstrate that blockade of NMDARs altered spike firing in the STN in a male nonhuman primate that had been rendered parkinsonian by treatment with the neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. In accompanying experiments in male rodents, we found that GluN2D-NMDAR expression in the STN was reduced in acutely or chronically dopamine-depleted animals. Taken together, our data suggest that blockade of NMDARs in the STN may be a viable antiparkinsonian strategy, but that the ultimate success of this approach may be complicated by parkinsonism-associated changes in NMDAR expression in the STN.


Assuntos
2-Amino-5-fosfonovalerato/farmacologia , Transtornos Parkinsonianos/enzimologia , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Núcleo Subtalâmico/enzimologia , 1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina , Potenciais de Ação/fisiologia , Animais , Bovinos , Antagonistas de Aminoácidos Excitatórios/farmacologia , Intoxicação por MPTP , Macaca mulatta , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Transtornos Parkinsonianos/induzido quimicamente , Transtornos Parkinsonianos/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Núcleo Subtalâmico/efeitos dos fármacos , Núcleo Subtalâmico/patologia , Transmissão Sináptica/fisiologia
18.
Neuroscience ; 377: 174-183, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29526688

RESUMO

Phospholipase D2 (PLD2), an enzyme involved in vesicle trafficking and membrane signaling, interacts with α-synuclein, a protein known to contribute in the development of Parkinson disease (PD). We previously reported that PLD2 overexpression in rat substantia nigra pars compacta (SNc) causes a rapid neurodegeneration of dopamine neurons, and that α-synuclein suppresses PLD2-induced nigral degeneration (Gorbatyuk et al., 2010). Here, we report that PLD2 toxicity is due to its lipase activity. Overexpression of a catalytically inactive mutant (K758R) of PLD2 prevents the loss of dopaminergic neurons in the SNc and does not show signs of toxicity after 10 weeks of overexpression. Further, mutant K758R does not affect dopamine levels in the striatum. In contrast, mutants that prevent PLD2 interaction with dynamin or growth factor receptor bound protein 2 (Grb2) but retained lipase activity, continued to show rapid neurodegeneration. These findings suggest that neither the interaction of PLD2 with dynamin, which has a role in vesicle trafficking, nor the PLD2 interaction with Grb2, which has multiple roles in cell cycle control, chemotaxis and activation of tyrosine kinase complexes, are the primary cause of neurodegeneration. Instead, the synthesis of phosphatidic acid (the product of PLD2), which is a second messenger in multiple cellular pathways, appears to be the key to PLD2 induced neurodegeneration. The fact that α-synuclein is a regulator of PLD2 activity suggests that regulation of PLD2 activity could be important in the progression of PD.


Assuntos
Degeneração Neural/enzimologia , Transtornos Parkinsonianos/enzimologia , Parte Compacta da Substância Negra/enzimologia , Fosfolipase D/metabolismo , Animais , Dinaminas/metabolismo , Proteína Adaptadora GRB2/metabolismo , Expressão Gênica , Células HEK293 , Humanos , Mutação , Degeneração Neural/patologia , Neurônios/enzimologia , Neurônios/patologia , Transtornos Parkinsonianos/patologia , Parte Compacta da Substância Negra/patologia , Fosfolipase D/genética , Ratos , Tirosina 3-Mono-Oxigenase/metabolismo
20.
J Biol Chem ; 293(17): 6337-6348, 2018 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-29530980

RESUMO

Autosomal recessive juvenile Parkinsonism (ARJP) is an inherited neurodegenerative disease in which 50% of affected individuals harbor mutations in the gene encoding the E3 ligase parkin. Parkin regulates the mitochondrial recycling pathway, which is induced by oxidative stress. In its native state, parkin is auto-inhibited by its N-terminal ubiquitin-like (Ubl) domain, which blocks the binding site for an incoming E2∼ubiquitin conjugate, needed for parkin's ubiquitination activity. Parkin is activated via phosphorylation of Ser-65 in its Ubl domain by PTEN-induced putative kinase 1 (PINK1) and a ubiquitin molecule phosphorylated at a position equivalent to Ser-65 in parkin. Here we have examined the underlying molecular mechanism of phosphorylation of parkin's Ubl domain carrying ARJP-associated substitutions and how altered phosphorylation modulates parkin activation and ubiquitination. We found that three substitutions in the Ubl domain (G12R, R33Q, and R42P) significantly decrease PINK1's ability to phosphorylate the Ubl domain. We noted that two basic loss-of-function substitutions (R33Q and R42P) are close to acidic patches in the proposed PINK1-parkin interface, indicating that ionic interactions at this site may be important for efficient parkin phosphorylation. Increased auto-ubiquitination with unique ubiquitin chain patterns was observed for two other Ubl domain substitutions (G12R and T55I), suggesting that these substitutions, along with phosphorylation, increase parkin degradation. Moreover, Ubl domain phosphorylation decreased its affinity for the potential effector protein ataxin-3, which edits ubiquitin chain building by parkin. Overall, our work provides a framework for the mechanisms of parkin's loss-of-function, indicating an interplay between ARJP-associated substitutions and phosphorylation of its Ubl domain.


Assuntos
Mutação de Sentido Incorreto , Transtornos Parkinsonianos/enzimologia , Ubiquitina-Proteína Ligases/química , Substituição de Aminoácidos , Ataxina-3/química , Ataxina-3/genética , Humanos , Transtornos Parkinsonianos/genética , Fosforilação/genética , Domínios Proteicos , Proteínas Repressoras/química , Proteínas Repressoras/genética , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinas/química , Ubiquitinas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...